I I O N Precision noncontact sensors and experts to help you use them

7166 4th Street North
Oakdale, MN 55128-7534
PRECISION

651-484-6544

CPL590 APl Document

Lion Precision/MTA
St. Paul, Minnesota, USA
Telephone: 651-484-6544
www.lionprecision.com

Copyright © 2018 All Rights Reserved

M017-9370.001

Precision noncontact sensors and experts to help you use them
7166 4th Street North

Oakdale, MN 55128-7534

PRECISION 651-484-6544
Contents
1.0 LiON.DEVICE.CPLSG0c.viieieie ettt sttt et et et st e et e e ste e s e e teeseenaeeteeteseeeneenbenneeneenneaneeneas 4
I R O <11 11 (o4 (o] (T OSSPSR PO P PROPRTN 4
0 0] ol A 11 00 (=T PSS 4
121 TYPEDBVICE ...t bbbt R R R R R bR b n e 4
1.2.2 I8/ 1 A o OSSPSR 5
1.3 PTOPEITIES .ottt b bbb bR R R R R Rt R Rt R R b n e n e 5
1.3.1 RS- (=AY o OSSR 5
1.3.2 RUNNING bbbt b b bR e e e st e bt e bt e bbb b n et e e neere s 5
1.3.3 =T (=TT YRS 6
1.34 IMAXTMUMRPDIM ...ttt b bbb b e e st e bt bt e bbb b e b e b e e e e eneabeas 6
1.35 MaAXSAMPINGRALE.c.eiiiiiieie e ettt s et e s ae e st e s teeabesbeeteesbesbeeseesteaneebesteeneeras 6
1.3.6 NOSPINSAMPIINGRALE ...ttt bbbt b bbbt b b e ene b 7
I |V 1= 1 To o L3OO USRS 8
14.1 LCT=] 031 (=10 1 PPV PSPPSR PSPPI 9
1.4.2 (CT=] (0 oL LSO PTP TSR 9
1.4.3 GetAVAIIADIECNANNEIS ..o ettt ee e 10
1.4.4 GELACTIVECNANNEIS ... et sttt e b besbe st et et eneenenreas 12
1.45 (C1=1 (@] 1 0] OSSR 13
1.4.6 S 1C] (O] o] (o] o [T TSP TSP P PP O U PTPPRPRPPON 14
1.4.7 CONNECE CRANNEL ...ttt sttt et e s e b e e seebesbe st et e e e neenenneas 16
1.4.8 (@0 0T T=Tod T SRS 17
1.4.9 CONNECLASYNC CRANNEL.....cuiiiiiii et e st e et s be et e e be s be e e e beereestestaeneeneas 18
1420 CONNECTASYINC LEST...c.eitiieiieiietieiesii sttt ettt b bbbttt b e bbb e e e e neene s 19
1.4.11 DiSCONNECT ChANNENc.eiiieiieieieit ettt s e st e s besbesbe e e e eseenenreas 20
O I 1~ 1= o 1Y OSSR 21
0 T 4 10 (o [0 o OSSP PSSRSO 22
O 7 Vo OSSR 22
S I €= 103 1 =T 1 T T OO T PP UUTOPTOUROTRRUPRPPN 23
T €= Iy ol |) o USROS 24
O A €= (%=1 11] U1 o] PSSR 25
O R €= (%=1 1]] =1 o] 157)Y o oSSR 25
R B C - (D 17 N5] - 1S £ [o SS SRR 26
1420 GetDAtaSTAlISTICSASYINC .. e eueiieieie ettt e sttt ettt et e st st e seestees e seeereebesseeneeaaeemeeseeeteeneeseeeneesbesneeneesaeaneeneas 27
1421 GetDataStatiStiCSBYCRANNELciiiiiiiiieie ettt 28
1.4.22 GetDataStatiSticCSBYCANNEISASYNCooveiiieieie ettt sttt et see e neas 28
1.4.23 SELSENSITIVITYLEVEL ..ottt bbbttt b e bt bbb s e ene s 29
O I 1~ oo L PSSR 30
2.0 Lo 8 = T TS 32
0 R o (0] o= 1 TSRS 32
2.1.1 SYSEMCONTIGUIALION ...t et s bt e b e s re e e e beaneesbesteeeeneas 32

2 M017-9370.001

Precision noncontact sensors and experts to help you use them
7166 4th Street North

Oakdale, MN 55128-7534

PRECISION 651-484-6544
2.1.2 ChasSiISCONTIGUIALIONc.veiieiicc ittt et e et e st et e b e s ae e esbeaneesbesreeneennas 36
2.1.3 ChannElCONTIGUIALIONc.eiiiiiiiiete bttt b b b sr e neene s 39
2.1.4 DY Tot=] [(o TSP TTRRSSPR 47
2.15 AASYNCSEALE ...ttt e Rt R R e R R R Rt R R e n e re e reereene 47
2.1.6 ANAIYSISOPLIONS ...ttt e st et e e be s be et e s Reeaeesbeeteestesbeeneenbeaaeentesreeeenreereerens 47
2.1.7 TTANSTEIOPTIONS ...ttt b b bbbt et et s e bt bbb n e e b 48
2.1.8 (OF: 11 o] 7> LA o] FH TSRO PTPRRPRTRON 48
2.19 IVLBASUIEIMEBNT ...ttt et bt bbbt b e bbbt bt et e bt e st s bt ekt e st e s bt e b e e ke ebe et e et e eneesbeebe et 49
A = 0111141 LA o] o SRR 50
2.2.1 F AN o] 1] - LTRSS 50
2.2.2 F N oL I3/ LTSS PP T TP PP PP PRPRN 50
2.2.3 DBVICEMOTE ...ttt e s bbbt b st b bt e e Rt bt e bk st b et et neen e 50
224 (01 aT 0 T=] I oL TP SO TSR U PP P P PPPRPPPPPON 50
2.25 (@8 T TS o I o L= OSSR 50
2.2.6 D 1 U 1Y O L= PP TSP R PR PRRT PSPPI 51
2.2.7 N USRS SensitivityLevel

51
2.2.8 SAMPINGIMOTE ...ttt bt bbbt b bbbt ben e e b ene b 51
2.2.9 TranSfErOPLIONNAEITIEocuiiiiiieece et et e e te et e s beese e besaeesreete e eesbeereestesreenee e 52
2.2.10 ANAIYSISOPLIONNEMEccuiiiiiiietiiiet ettt bbbt e ettt b bbb bt et beens 52
T O I o S 1 (= 12 o ST TOOTTRSPRPR 53
TS U o] [o1V =T g T g 0 o [0SR 53
3.1.1 BEOINREAA.ccueitiie ettt st e et e e be s te et e s be e st e s beeteeabesheerb e beabeebeareerenreeteetens 54
3.1.2 (O10] 0}V o TP TP TP PRSP PR PP PR 55
3.1.3 1000}V 01/ oo USRS 56
3.1.4 T =T o SRR 58
3.15 e TS o ST 58
3.1.6 (=T U0 USSP 59
3.1.7 REAAASYINC ...ttt sttt st et et e e te e s beete e s besbeete e besRe e be s ke esbesbeebeesbesbeess e beaneesbeabeenresbeeteerens 59
3.1.8 DISPIOSE ...tttk bbb bR R R R R R bR et R £ R R bbb bbb 60
4.0 CPL590 Data ReCIVING EXAMPIEScciiiiiieieieieiisieste ettt 61
A |V Lo U= L1V oo SRR 61
A V) (o 101V [T L= USSR 62

3 M017-9370.001

Precision noncontact sensors and experts to help you use them
7166 4th Street North

Oakdale, MN 55128-7534
PRECISION 651-484-6544

1.0 Lion.Device.CPL590

1.1 Constructor
Cpl590Api
This namespace provides access to the CPL59X Board for the 2U CPL590 System
Syntax (C#):
Cpl590Api ()

Assemblies:
Lion.Device.CPL590.dll

Example:
public static void Main()
{
// Get Instance of API
var apiHandle = Cpl590Api();
// Get the System Configuration structure
var system = apiHandle.GetSystem();
}

1.2 Public Attributes

TypeDevice | The type of device. Uses the DeviceMode structure. Default is
DeviceMode.Cpl590.

TypeApi | The type of API. Uses the ApiType structure. Default for this API is
ApiType.Device.

1.2.1 TypeDevice

The type of device that is accessed with this API (Elite, CPL590, SpindleCheck, etc).

Syntax (C#)
DeviceMode TypeDevice

Assembilies: Lion.Device.CPL590.dll, Lion.Base.dl|

4 M017-9370.001

Precision noncontact sensors and experts to help you use them

LION

PRECISION
1.2.2 TypeApi

The type of API.

Syntax (C#)

ApiType TypeApi

7166 4th Street North

Oakdale, MN 55128-7534

Assemblies: Lion.Device.CPL590.dll, Lion.Base.dll

Remarks:

For this CPL590 API, this value is preset to ApiType.Device.

1.3 Properties

651-484-6544

StateApi

The current state of the API

Running

The flag indicating whether the Data Receiving is Active.

Frequency

The Frequency (RPS) of the data buffer

MaximumRpm

The maximum RPM. Default is 15000;.

MaxSamplingRate

The maximum sampling rate of the Device. Default is 670004,.

NoSpinSamplingRate

The Sampling Rate to be set when the Spindle is NOT Rotating. Default
is 670004.

1.3.1 StateApi

The current state of the API.

Syntax (C#):

ApiState StateApi

1.3.2 Running

Gets a value indicating the state of data transfer with the CPL591/2.

Syntax (C#)

bool Running

Assemblies: Lion.Device.CPL590.dll

Remarks:

After a successful data transfer is initiated, this flag will be set to true.

Example:

M017-9370.001

LION

Precision noncontact sensors and experts to help you use them

PRECISION

7166 4th Street North
Oakdale, MN 55128-7534
651-484-6544

{

public static void DataHandler(CPL590Api apiHandle, int dataSize)

// Get the System Configuration structure
var system = apihandle.GetSystem();

// Set the data size
apihandle.SetOption(AnalysisOpttionName.ChannelBufferSize, dataSize);

// Build test data buffer
var testData = new double[channelCount, dataSize];

// Use the GetStream public method to return the LionStream.
var lionStream = apiHandle.GetStream();

// Perform a BeginRead function to start receiving data
lionStream.BeginRead(testData, 0, dataSize, DataCallbackS, null);

// If Begin did not happen, error
if (!apiHandle.Running)
{
Console.Write(“Data Did NOT Begin!”)

}

1.3.3 Frequency

Gets the frequency (Hz) of the Input Data signal.

Syntax (C#):

double Frequency

Assemblies: Lion.Device.CPL590.dll

Remarks:

This value is actually the Revolutions Per Second detected on the Data Buffer with the Spindle Rotating. If the
Spindle is not rating, this value is set to zero.

1.3.4 MaximumRpm

The Maximum RPM that this Device can send to the Spindle.

Syntax (C#):

double MaximumRpm

Assemblies: Lion.Device.CPL590.dll

Remarks:

This value is to be used the main application software, which will control the Spindle RPM for testing.

1.3.5 MaxSamplingRate

The maximum Sampling Rate (Samples per second) that this Device can handle.

Syntax (C#):

double MaxSamplingRate

Assemblies: Lion.Device.CPL590.dll

M017-9370.001

I I O N Precision noncontact sensors and experts to help you use them

7166 4th Street North
Oakdale, MN 55128-7534
PRECISION 651-484-6544

Remarks:

This value is to be used by the Lion.Core data processing routines when calculating the new Sampling rate for Auto
Sampling mode operations.

1.3.6 NoSpinSamplingRate

The Sampling Rate (Samples per second) generated by this Device when it detects that the Spindle is not rotating.

Syntax (C#):

double NoSpinSamplingRate
Assemblies: Lion.Device.CPL590.dll
Remarks:

This value is to be used by the Lion.Core data processing routines when calculating the new Sampling rate for Auto
Sampling mode operations.

M017-9370.001

Precision noncontact sensors and experts to help you use them

7166 4th Street North
Oakdale, MN 55128-7534
651-484-6544

LION

PRECISION

1.4 Methods

GetSystem ()

Get the structure of the System

GetChassis ()

Get the array of available chassis.

GetAvailableChannels ()

Get the array of available channels (devices).

GetActiveChannels ()

Get the array of active channels (devices).

GetOption (OptionsName ')

Get the options used for running Data transfer on all
devices.

SetOption (AnalysisOpttionName , object)

Set the options used for running Data transfer on all
devices.

Connect (ChannelConfiguration)

Opens a connection to a CPL59X Driver.

Connect (List< ChannelConfiguration >)

Opens a connection to a strong typed List of CPL59X
Channels(Devices)

ConnectAsync (ChannelConfiguration,
CancellationToken)

Opens a connection to a CPL59X as an asynchronous
operation. Can be cancelled using the CancellationToken

ConnectAsync (List < ChannelConfiguration >,

CancellationToken)

Opens a connection to a strong typed List of CPL59X
Channels (Devices) as an asynchronous operation. Can be
cancelled using the CancellationToken

Disconnect (ChannelConfiguration)

Closes a connection to a CPL59X Driver.

Disconnect (List< ChannelConfiguration >)

Closes a connection to an array of CPL59X Drivers.

Shutdown ()

Shut down (closes) all Active CPL59X Drivers

Read (int)

Reads Data from all Active CPL59X Drivers.

GetStream ()

Returns the Stream class used to receive data.

GetDevicelnfo ()

Get the CPL590 FTDI Chip device information.

GetCalibrations ()

Get the Calibration (TEDs) information from the CPL59X
Driver.

GetCalibrationsAsync (CancellationToken)

Get the Calibration (TEDs) information from the CPL59X
Driver as an asynchronous operation.

GetDataStatistics ()

etc.)

Get the Statistics of the incoming Data (Min, Max, Average,

GetDataStatisticsAsync (CancellationToken)

etc.) as an asynchronous operation.

Get the Statistics of the incoming Data (Min, Max, Average,

8 M017-9370.001

Precision noncontact sensors and experts to help you use them

LION

PRECISION

7166 4th Street North
Oakdale, MN 55128-7534
651-484-6544

GetDataStatisticsByChannel (int)

Get the Statistics of the incoming Data (Min, Max, Average,
etc.) by channel.

GetDataStatisticsByChannelsAsync(int,
CancellationToken)

Get the Statistics of the incoming Data (Min, Max, Average,
etc.) by channel as an asynchronous operation.

SetSensitivityLevel (int, SensitivityLevel)

Sets the Sensitivity level (probe range) of the CPL59X
Driver.

Dispose ()

Performs application-defined tasks associated with freeing,
releasing, or resetting unmanaged resources.

1.4.1 GetSystem
Get the structure of the CPL59X System.
Syntax (C#):

SystemConfiguration GetSystem ()

Assemblies:
Lion.Device.CPL590.dll, Lion.Base.dll

Parameters:
None

Returns:

SystemConfiguration

The SystemConfiguration property.

Exceptions:
None

Remarks:

Call this method to retrieve the contents of the System structure. This structure contains the List of Chassis’s in the System
as well as the Data Transfer and Calculation settings. The System structure is built when the GetAvailableChannels method

is run on the CPL590 API.

Example:

public static void Main()

{
// Get Instance of API
var apiHandle = Cpl590Api();
// Get the System Configuration structure
var system = apiHandle.GetSystem();
// Display number of Chassis found in the System
Console.Write(system.ChassisCount);

}

1.4.2 GetChassis
Get the strong typed List of available chassis installed in the System.

Syntax (C#):

M017-9370.001

Precision noncontact sensors and experts to help you use them
7166 4th Street North

Oakdale, MN 55128-7534
PRECISION 651-484-6544

List<ChassisConfiguration> GetChassis ()

Assemblies:
Lion.Device.CPL590.dll, Lion.Base.dll, System.Collections.Generic.dll

Parameters:
None

Returns:
List< ChassisConfiguration> The strong typed List of the ChassisConfiguration property.

Exceptions:
None

Remarks:
Call this method to retrieve the List array of the Chassis structure. For CPL590 One-Channel System, the count of the List

matches the number of Channels (Devices) that are to be connected and run data transfer. This List is built when the
GetAvailableChannels method is run on the CPL590 API.

Example:
public static void Main()
{
// Get Instance of API
var apiHandle = Cpl590Api();
// Get the Chassis Configuration structure
var chassis = apiHandle.GetChassis();
// Display number of Chassis found in the System
Console.Write(chassis.Count);
}

1.4.3 GetAvailableChannels
Get the strong typed List of available devices.
Syntax (C#):

List< ChannelConfiguration > GetAvailableChannels ()

Assemblies:
Lion.Device.CPL590.dll, Lion.Base.dll, System.Collections.Generic.dll

Parameters:
None

Returns:
List< ChannelConfiguration > The strong typed List of the ChannelConfiguration property.

Exceptions:
None

Remarks:
Call this method to get a strong typed List of all CPL59X Channels (Devices) connected to the USB Bus of the PC. The size of

the List matches the number of Devices that are to be connected and run data transfer. For CPL590 One Channel System,

10 M017-9370.001

Precision noncontact sensors and experts to help you use them
7166 4th Street North

PRECISION

Oakdale, MN 55128-7534
651-484-6544

the count of the List matches the number of Channels (Devices) that are to be connected and run data transfer. The

‘IsEnable’ item of the property will be set to ‘false’ for each Device.
Calling this method will build the System and Chassis structures based on the devices found.

Example:

public static void Main()

{
// Get Instance of API

var apiHandle = Cpl590Api();

// Get array of Devices found on USB Bus
List<ChannelConfiguration> devicelList = apiHandle.GetAvailableChannels();

// Cycle through the array and display the Serial Number on the Console
foreach (ChannelConfiguration driver in devicelist)

{
// Get Serial Numbers from array
Console.Write(driver.SerialNumber);

11

M017-9370.001

LION

Precision noncontact sensors and experts to help you use them

PRECISION
1.4.4 GetActiveChannels

7166 4th Street North
Oakdale, MN 55128-7534
651-484-6544

Get the strong typed List of active Channels (devices). Active devices are devices that have been connected (opened) and
ready to run data transfer.

Syntax (C#):

List< ChannelConfiguration > GetActiveChannels()

Assemblies:

Lion.Device.CPL590.dll, Lion.Base.dll

Parameters: None

Returns:

List< ChannelConfiguration >

The strong typed List of the ChannelConfiguration property.

Exceptions: None

Remarks:
Call this method to get an array of all CPL59X Channels (Devices) that had the ‘Connect’ function successfully run on the

device. The ‘IsEnable’ and the ‘IsReady’ items of the ChannelConfiguration property should be set to ‘true’ for each Device.
If the operator has not run the ‘Connect’ function, the array will be empty.

Example:

{

public static void Main()

// Get API
var apiHandle = CPL590Api();

// Get List of Devices on USB Bus
List<ChannelConfiguration> devicelist = apiHandle.GetAvailableChannels();

// Cycle through the list and enable all channels
foreach (var driver in devicelist)

{
}

// Cycle through the 1list and open all channels
foreach (var driver in devicelist)

{

driver.IsEnabled = true;

// Connect to Device
apiHandle.Connect(driver);

// Check Connected flag
if (driver.IsConnected == false)

{
}

Console.Write(“Connect Failed.”);

}

// Get Actives List
List<ChannelConfiguration> activelist = apiHandle.GetActiveChannels();

// Cycle through the list and display the Serial Number on the Console
foreach (var driver in activelist)
{
// Get Serial Numbers from List
Console.Write(driver.SerialNumber);

12

M017-9370.001

Precision noncontact sensors and experts to help you use them

LION

PRECISION
1.4.5 GetOption

Returns the value of a specified configuration option, for the System or Channel, represented as an object.

Syntax (C#):

7166 4th Street North
Oakdale, MN 55128-7534

651-484-6544

object GetOption (TransferOptionName)

Returns the value of a specified TransferOptions,
represented as an object.

object GetOption (AnalysisOptionName)

Returns the value of a specified AnalyzeOptions,
represented as an object.

object GetOption (EncoderOptionName)

Returns the value of a specified EncoderOptions,
represented as an object. This feature is not used in
current CPL59X Systems.

object GetOption (IndexOptionName)

as an object. This feature is not used in current CPL59X
Systems.

Returns the value of a specified IndexOptions, represented

object GetOption (TemperatureOptionName) [Returns the value of a specified TemperatureOptions,

represented as an object. This feature is not used in
current CPL59X Systems.

object GetOption (TransferOptionName optionName)

Assemblies: Lion.Device.CPL590.dll, Lion.Base.dll

Parameters:

optionName One of the TransferOptionName values.
Returns:

object An object that represents the value of the option.
Exceptions:

InvalidOperationException

Illegal Options Name.

Exception

Remarks:

TransferOptions determine the behavior for receiving Data such as number of channels, size of data per

channel, etc.

13

M017-9370.001

7166 4th Street North

I I O N Precision noncontact sensors and experts to help you use them

PRECISION

Example:

Oakdale, MN 55128-7534
651-484-6544

public void Execute(CPL590Api apiHandle, double[,] inputData)

{

// Get the Number of Channels (Rows) from the Data buffer
var channelCount = inputData.GetLength(9);

// Get the configured channel count
// Display error if number of channels do not match

if (numberChannels != channelCount)
Console.Write($”Fail! Channel counts do not match!”);

var numberChannels = (double)apiHandle.GetOption(TransferOptionName.DataChannelCount);

object GetOption (AnalysisOptionName optionName)

Assemblies: Lion.Device.CPL590.dll, Lion.Base.dll

Parameters:

optionName One of the AnalyzeOptions values.
Returns:

object An object that represents the value of the option.

Exceptions:

InvalidOperationException Illegal Options Name.

Exception

Remarks:

AnalyzeOptions determine the behavior for analyzing the received Data such as sampling rate, number of revolutions, etc.

Example:

public void Execute(CPL590Api apiHandle, double[,] inputData)
{

// Get the configured channel count

// Display error if number of channels do not match
if (numberChannels != channelCount)
Console.Write($”Fail! Channel counts do not match!”);

var setSamplingRate = (double)apiHandle.GetOption(TransferOptionName.DataChannelCount);

1.4.6 SetOption

Sets the specified configuration option, for the System or Channel, represented as an object.

14

M017-9370.001

LION

PRECISION

Syntax (C#):

Precision noncontact sensors and experts to help you use them

7166 4th Street North

Oakdale,

MN 55128-7534
651-484-6544

optionValue)

SetOption (TransferOptionName, object

Sets the value of a specified TransferOptions, represented
as an object.

SetOption (AnalysisOptionName, object

optionValue)

Sets the value of a specified AnalyzeOptions, represented
as an object.

optionValue)

SetOption (EncoderOptionName, object

Sets the value of a specified EncoderOptions, represented
as an object. This feature is not used in current CPL59X
Systems.

optionValue)

SetOption (IndexOptionName, object

Sets the value of a specified IndexOptions, represented as
an object. This feature is not used in current CPL59X
Systems.

optionValue)

SetOption (TemperatureOptionName, object

Sets the value of a specified TemperatureOptions,
represented as an object. This feature is not used in
current CPL59X Systems.

Assemblies: Lion.Device.CPL590.dll, Lion.Base.dll

Parameters:

optionName

One of the AnalysisOptionName values.

serialNumber

The serial number of the Channel’s configuration. Use empty
string if setting Data Transfer or Analysis options.

optionValue

The value of the option.

Returns:

Exceptions:

InvalidOperationException

Illegal Options Name.

Exception

Remarks:

Example:

public static void Main()

{
// Get API

var apiHandle = CPL590Api();

// Set the Sampling Rate to No Spin
apihandle.SetOption(TransferOptionName.CalculatedSamplingRate,
apihandle.NoSpinSamplingRate);

// Set the Auto Sampling mode
apihandle.SetOption(AnalysisOptionName.SamplingMode, SamplingMode.Auto);

15

M017-9370.001

Precision noncontact sensors and experts to help you use them
7166 4th Street North

Oakdale, MN 55128-7534
PRECISION 651-484-6544

1.4.7 Connect Channel

Opens a connection to a CPL59X Channel(Device)
Syntax (C#):

void Connect (ChannelConfiguration device)

Assemblies: Lion.Device.CPL590.dll, Lion.Base.dll

Parameters:
device The CPL59X Channel (Device) to which you intend to connect.
The structure of the device is ChannelConfiguration.
Returns:
Exceptions:
ArgumentNullException deviceldentifier
InvalidOperationException No Active CPL59X Drivers found.
Remarks:

Call this method to establish a USB connection to the specified CPL59X Channel (Device) designated by the device. This
device is derived from the ChannelConfiguration property and contains the ID’s of both the A and B side of the FT4222
chip on the Driver board.

Example:
public static void Main()

{

// Get API
var apiHandle = CPL590Api();

// Get List of Devices on USB Bus
var devicelist = apiHandle.GetAvailableChannels();

// Cycle through the list and enable all channels
foreach (var driver in devicelist)

{
}

// Cycle through the list and enable all channels
foreach (var driver in devicelist)
{
// Connect to Device
apiHandle.Connect(driver);

driver.IsEnabled = true;

// Check Connected flag
if (driver.IsConnected == false)

{
}

Console.Write(“Connect Failed.”);

}

16 M017-9370.001

LION

Precision noncontact sensors and experts to help you use them

PRECISION
1.4.8 Connect List

Opens a connection to a strong typed List of CPL59X Channels(Devices)

Syntax (C#):

void Connect (List< ChannelConfiguration > deviceList)

Assemblies: Lion.Device.CPL590.dll, Lion.Base.dll

7166 4th Street North
Oakdale, MN 55128-7534
651-484-6544

Parameters:
devicelList The strong typed List of CPL59X Channels (Devices) to which you
intend to connect. The structure of the device is
ChannelConfiguration.
Returns:
Exceptions:
ArgumentNullException deviceldentifier

InvalidOperationException

No Active CPL59X Drivers found.

Remarks:

Call this method to establish a USB connection to the specified CPL59X Channels (Devices) designated by the device. This
device is derived from the ChannelConfiguration property and contains the ID’s of both the A and B side of the FT4222 chip
on the Driver board.

Example:

{

public static void Main()

// Get API
var apiHandle = CPL590Api();

// Get List of Devices on USB Bus
var devicelList = apiHandle.GetAvailableChannels();

// Cycle through the list and enable all channels
foreach (var driver in devicelist)

{
}

// Connect to Devices and enable them
apiHandle.Connect(devicelList);

driver.IsEnabled = true;

// Cycle through the list and check channels
foreach (var driver in devicelist)

// Check Connected flag
if (driver.IsConnected == false)

{
}

Console.Write(“Connect Failed.”);

}

17

M017-9370.001

7166 4th Street North

I I D N Precision noncontact sensors and experts to help you use them

PRECISION
1.4.9 ConnectAsync Channel

Opens a connection to a CPL59X Channel(Device) as an asynchronous operation.
Syntax (C#):

void Connect (ChannelConfiguration device, CancellationToken cancellationToken)

Assemblies: Lion.Device.CPL590.dll, Lion.Base.dll

Oakdale, MN 55128-7534
651-484-6544

Parameters:
device The CPL59X Channel (Device) to which you intend to connect.
The structure of the device is ChannelConfiguration.
cancellationToken The Cancellation Token.
Returns:
Exceptions:
ArgumentNullException deviceldentifier
InvalidOperationException No Active CPL59X Drivers found.
Remarks:

Call this method to establish a USB connection to the specified CPL59X Channel (Device) designated by the device. This
device is derived from the ChannelConfiguration property and contains the ID’s of both the A and B side of the FT4222 chip

on the Driver board.

Example:

public static void Main()

{
// Get API

var apiHandle = CPL590Api();

// Get Async cancellation token
var _taskCancel = new CancellationTokenSource();

// Get List of Devices on USB Bus
var devicelist = apiHandle.GetAvailableChannels();

// Cycle through the list and enable all channels
foreach (var driver in devicelist)

{
}

// Cycle through the list and enable all channels
foreach (var driver in devicelist)

driver.IsEnabled = true;

{
// Connect to Device
apiHandle.ConnectAsync(driver, _taskCancel.Token).Wait(_taskCancel.Token);
// Check Connected flag
if (driver.IsConnected == false)
{
Console.Write(“Connect Failed.”);
¥
¥

18

M017-9370.001

Precision noncontact sensors and experts to help you use them
7166 4th Street North

PRECISION
1.4.10 ConnectAsync List

Oakdale, MN 55128-7534
651-484-6544

Opens a connection to a strong typed List of CPL59X Channels(Devices) as an asynchronous operation.

Syntax (C#):

void ConnectAsync (List< ChannelConfiguration > devicelList)

Assemblies: Lion.Device.CPL590.dll, Lion.Base.dll

Parameters:
devicelist The strong typed List of CPL59X Channels (Devices) to which you
intend to connect. The structure of the device is
ChannelConfiguration.
Returns:
Exceptions:
ArgumentNullException deviceldentifier
InvalidOperationException No Active CPL59X Drivers found.
Remarks:

Call this method to establish a USB connection to the specified CPL59X Channels (Devices) designated by the device. This

device is derived from the ChannelConfiguration property and contains the ID’s of both the A and B side of the FT4222 chip

on the Driver board.

Example:

public static void Main()

{
// Get API

var apiHandle = CPL590Api();

// Get Async cancellation token
var _taskCancel = new CancellationTokenSource();

// Get List of Devices on USB Bus
var devicelList = apiHandle.GetAvailableChannels();

// Cycle through the list and enable all channels
foreach (var driver in devicelist)

{
}

driver.IsEnabled = true;
// Connect to Devices
apiHandle.ConnectAsync(devicelist, _taskCancel.Token).Wait(_taskCancel.Token);

// Cycle through the list and check channels
foreach (var driver in devicelist)

// Check Connected flag
if (driver.IsConnected == false)

{
}

Console.Write(“Connect Failed.”);

}

19

M017-9370.001

Precision noncontact sensors and experts to help you use them
7166 4th Street North

Oakdale, MN 55128-7534
PRECISION 651-484-6544

1.4.11 Disconnect Channel

Closes the connection to a CPL59X Channel(Device)
Syntax (C#):

void Disconnect (ChannelConfiguration device)

Assemblies: Lion.Device.CPL590.dll, Lion.Base.dll

Parameters:
device The CPL59X Channel (Device) to which you intend to disconnect.
The structure of the device is ChannelConfiguration.
Returns:
Exceptions:
ArgumentNullException deviceldentifier
InvalidOperationException No Active CPL59X Drivers found.
Remarks:

Call this method to establish a USB connection to the specified CPL59X Channel (Device) designated by the device. This
device is derived from the ChannelConfiguration property and contains the ID’s of both the A and B side of the FT4222 chip
on the Driver board.

Example:
public static void Close(CPL590Api apiHandle)
{

// Get List of active Devices
var devicelist = apiHandle.GetActiveChannels();

// Cycle through the list and close all channels
foreach (var driver in devicelist)

{

// Disconnect from Device
apiHandle.Disconnect(driver);

// Check Connected flag
if (driver.IsConnected)

{
}

Console.Write(“Disconnect Failed.”);

}

20 M017-9370.001

Precision noncontact sensors and experts to help you use them
7166 4th Street North

Oakdale, MN 55128-7534
PRECISION 651-484-6544

1.4.12 Disconnect List

Closes the connection to a strong typed List of CPL59X Channels(Devices)
Syntax (C#):

void Disconnect (ChannelConfiguration device)

Assemblies: Lion.Device.CPL590.dll, Lion.Base.dll

Parameters:
device The CPL59X Channel (Device) to which you intend to disconnect.
The structure of the device is ChannelConfiguration.
Returns:
Exceptions:
ArgumentNullException deviceldentifier
InvalidOperationException No Active CPL59X Drivers found.
Remarks:

Call this method to establish a USB connection to the specified CPL59X Channel (Device) designated by the device. This
device is derived from the ChannelConfiguration property and contains the ID’s of both the A and B side of the FT4222 chip
on the Driver board.

Example:
public static void Close(CPL590Api apiHandle)
{

// Get List of active Devices
var devicelist = apiHandle.GetActiveChannels();

// Disconnect from Devices
apiHandle.Disconnect(devicelist);

21 M017-9370.001

Precision noncontact sensors and experts to help you use them
7166 4th Street North

Oakdale, MN 55128-7534
PRECISION 651-484-6544

1.4.13 Shutdown

Shut down all Active CPL59X Drivers

Syntax (C#):

void Shutdown()

Assemblies: Lion.Device.CPL590.dll, Lion.Base.dll
Parameters:

Returns:

Exceptions:
ArgumentNullException deviceldentifier

InvalidOperationException No Active CPL59X Drivers found.

Remarks:

Call this method to immediately disconnect all active Channels (Devices).

Example:
public static void Close(CPL590Api apiHandle)

{

// Disconnect from all active Devices
apiHandle.Shutdown();

1.4.14 Read

Reads data from all Active CPL59X Drivers and stores it to a Two-Dimensional 16 bit word jagged array.
Syntax (C#):

void Read (int dataSize)

Assemblies:

Lion.Device.CPL590.dll, Lion.Base.dll

Parameters:
dataSize Size of the data.

Returns:

Two-Dimensional Buffer of Data words received.

Exceptions:

nvalidOperationException Device must be Connected.
ArgumentNullException Data size must be at least 2K.
Remarks:

22 M017-9370.001

Precision noncontact sensors and experts to help you use them
7166 4th Street North

PRECISION

Oakdale, MN 55128-7534
651-484-6544

This method reads data into buffer and returns the number of words successfully read. The Read operation reads as much
data as is available, up to the number of words specified by the size parameter. The resultant two-dimensional jagged
array is grouped by channel. The first pointer in the jagged array is the channel number (minus one). The second pointer is

the data word for the channel.

Example:

public static void ReceiveData(CPL590Api apiHandle)
{

// Get Actives List (Devices that are enabled and connected)
List<ChannelConfiguration> activelList = apiHandle.GetActiveChannels();

// Read 4096 words from each device in the list
double[,] inputData = apiHandle.Read(4096);

// Display the contents of the 2" channel’s data word at location 140
Console.Write(inputData[1, 140]);

1.4.15 GetStream

Returns the Stream class used to receive data.

Syntax (C#):

LionStream GetStream()

Assemblies: Lion.Device.CPL590.dll, Lion.Base.dll, Lion.Core.dll
Parameters:

Returns:

LionStream The underlying LionStream.

Exceptions:

InvalidOperationException Device: SerialNumber NOT Connected.

Remarks:

The GetStream method returns a class named LionStream which you can use to receive data. The LionStream class
inherits from the Stream class, which provides a rich collection of methods and properties used to facilitate network

communications.

You must call the Connect method first, or the GetStream method will throw an InvalidOperationException. This method
passes the location of the Read function, to the LionStream class, which will execute when data is received.

23

M017-9370.001

Precision noncontact sensors and experts to help you use them

LION

7166 4th Street North
Oakdale, MN 55128-7534
651-484-6544

Example:
public int ProduceWorkItems(CPL590Api apiHandle, ref double[,] mainData)
{
// Get the Cancel Task flag
var taskCancel = new CancellationTokenSource();
// Use the GetStream public method to return the LionStream.
var lionStream = apiHandle.GetStream();
// Read the current 2D Data Frame from the Device
var wordsRead = lionStream.ReadAsync(mainData, 8096, taskCancel.Token).Result;
// Return the number of words received from the Device
return wordsRead;
}
1.4.16 GetDevicelnfo

Read the CPL590 FTDI Chip device information.
Syntax (C#):

Devicelnfol[,] GetDevicelnfo()

Assemblies: Lion.Device.CPL590.dll, Lion.Base.dll
Parameters:

Returns:

Devicelnfo

The Device Information defined in Devicelnfoclass

Exceptions:

InvalidOperationException

ICPL590 Driver must be setup first.

Remarks:

Call this method to read the internal information of the FTDI 4222 Chips on the CPL59X Channel (Driver). The resultant
data is a Two-Dimensional jagged array containing the information of both A and B sides of the FTDI 4222 Chip. The first

pointer in the jagged array is the channel number (minus one). The second pointer is the side (A) or (B) of the chip. The (A)

side is selected using 0 and the (B) side is selected using 1.

Example:

public static void Main()

{
// Get API

var apiHandle = CPL590Api();

// Get Information of the Device’s FTDI Chips
DeviceInfo[,] devInfo = apiHandle.GetDeviceInfo();

Console.Write(devInfo [1, 1].SerialNumber);

// Display the Serial Number of the 2" channel’s ‘B’ side of the FTDI Chip

24

M017-9370.001

Precision noncontact sensors and experts to help you use them
7166 4th Street North

Oakdale, MN 55128-7534
PRECISION 651-484-6544

1.4.17 GetCalibrations

Gets the calibration (TEDs) data from the Channel Driver.
Syntax (C#)

Calibration[] GetCalibrations()

Assemblies:

Lion.Device.CPL590.dll, Lion.base.dll

Returns:

An array of TEDs data structures, one for each channel in the System.

Exceptions:

InvalidOperationException Device NOT Connected.

DeviceErrorException

Remarks:

The TED's (Calibration) information is stored on CPL59X Channel (Driver) board. It is highly recommended to run this
function before data transfer in order to have the proper values for calculating displacement from the raw counts sent from
the hardware driver.

Example:
public Calibration[] ReadTEDs(CPL590Api apiHandle)
{

// Get the list of Active CPL59X Drivers
var devicelist = apiHandle.GetActiveChannels();
if (devicelList == null)
throw new InvalidOperationException($"No Active CPL59X Drivers found.");

// Set the Driver Sensitivity Range
apiHandle.SetSensitivitylLevel(SensitivityLevel .R1);

// Read Calibration (TEDs) Information
var tedsData = apiHandle.GetCalibrations();

return tedsData;

1.4.18 GetCalibrationsAsync

Gets the calibration (TEDs) data from the Channel Driver as an asynchronous operation.
Syntax (C#)

async Task<Calibration[]> GetCalibrationsAsync (CancellationToken cancellationToken)
Assemblies:

Lion.Device.CPL590.dll, Lion.base.dll

25 M017-9370.001

LION

Precision noncontact sensors and experts to help you use them

7166 4th Street North
Oakdale, MN 55128-7534
651-484-6544

PRECISION
Parameters:
cancellationToken The Cancellation Token.
Returns:

The TEDs data stored on the CPL59X Channel (Driver). An array of TEDs data structures, one for each sensitivity range for
the driver.

Exceptions:

InvalidOperationException Device NOT Connected.

DeviceErrorException

Remarks:

The TED’s (Calibration) information is stored on CPL59X Channel (Driver) board. It is highly recommended to run this
function before data transfer in order to have the proper values for calculating displacement from the raw counts sent from
the hardware driver.

Example:

{

public Calibration[] ReadTEDs(CPL590Api apiHandle)

// Get the list of Active CPL59X Drivers
var devicelist = apiHandle.GetActiveChannels();
if (devicelList == null)

throw new InvalidOperationException($"No Active CPL59X Drivers found.

// Set the Driver Sensitivity Range
apiHandle.SetSensitivitylLevel(SensitivityLevel .R1);

// Get Async cancellation token
var taskCancel = new CancellationTokenSource();

// Get Configuration (TEDs) data from the Driver
var tedsData = apiHandle.GetCalibrationsAsync(taskCancel.Token).Result;

return tedsData;

")

1.4.19 GetDataStatistics

Gets the Measurement information (Statistics) of the Receiving Data Buffers from the CPL59X Channels
(Devices).

Syntax (C#):

Measurement [] GetDataStatistics()

Assembilies: Lion.Device.CPL590.dll, Lion.Base.dl|

Parameters:

Returns:

Measurement []

received from each CPL59X Driver.

The array of Measurement information for the last data block

26

M017-9370.001

Precision noncontact sensors and experts to help you use them
7166 4th Street North

Oakdale, MN 55128-7534

651-484-6544

PRECISION
Exceptions:
InvalidOperationException No Active CPL59X Drivers found.
Or
Device NOT Connected.
Remarks:

The Measurement information consists of the Maximum value, the Minimum value, the Average value, and the Peak-to-

Peak value of the receiving data block.

Example:

public void DisplayStatistics(CPL590Api apiHandle)
{

// Read the Measurement data for all Drivers
Measurement[] measData = _apiHandle.GetDataStatistics();

// Display the Average value of the data block for the 2" channel
Console.Write(measData[1].Average);

1.4.20 GetDataStatisticsAsync

Gets the Measurement information (Statistics) of the Receiving Data Buffers from the CPL59X Channels

(Devices) as an asynchronous operation.
Syntax (C#):
async Task< Measurement []> GetDataStatisticsAsync (CancellationToken cancellationToken)

Assemblies: Lion.Device.CPL590.dll, Lion.Base.dll

Parameters:
cancellationToken The Cancellation Token.
Returns:
Measurement [/ The array of Measurement information for the last data block
received from each CPL59X Driver.
Exceptions:
InvalidOperationException No Active CPL59X Drivers found.
Or
Device NOT Connected.
Remarks:

The Measurement information consists of the Maximum value, the Minimum value, the Average value, and the Peak-to-

Peak value of the receiving data block.

27

M017-9370.001

Precision noncontact sensors and experts to help you use them
7166 4th Street North

Oakdale, MN 55128-7534

PRECISION 651-484-6544
Example:
public void DisplayStatistics(CPL590Api apiHandle)
{

// Get Async cancellation token
var taskCancel = new CancellationTokenSource();

// Read the Measurement data for all Drivers
Measurement[] measData = apiHandle.GetDataStatisticsAsync(taskCancel.Token).Result;

// Display the Average value of the data block for the 2" channel
Console.Write(measData[1].Average);

1.4.21 GetDataStatisticsByChannel

Gets the Measurement information (Statistics) of the Receiving Data Buffers from the CPL59X Channels
(Devices) by Channel number

Syntax (C#):
Measurement GetDataStatisticsByChannel(channel)

Assemblies: Lion.Device.CPL590.dll, Lion.Base.dll

Parameters:
channel The channel number of the CPL59X Driver.
Returns:
Measurement The Measurement information for the last data block received
from the CPL59X Driver selected by channel number.
Exceptions:
InvalidOperationException No Active CPL59X Drivers found.
Or
Device NOT Connected.
Remarks:

The Measurement information consists of the Maximum value, the Minimum value, the Average value, and the Peak-to-
Peak value of the receiving data block.

Example:

public void DisplayStatistics(CPL590Api apiHandle, int channelNumber)
{

// Read the Measurement data for selected channel
Measurement measData = _apiHandle.GetDataStatisticsByChannel(channelNumber);

// Display the Peak-to-Peak value of the data block
Console.Write(measData.P2P);

1.4.22 GetDataStatisticsByChannelsAsync

28 M017-9370.001

Precision noncontact sensors and experts to help you use them
7166 4th Street North

Oakdale, MN 55128-7534
PRECISION 651-484-6544

Gets the Measurement information (Statistics) of the Receiving Data Buffers from the CPL59X Channels
(Devices) by Channel number

Syntax (C#):
Measurement GetDataStatisticsByChannelAsync(channel, CancellationToken cancellationToken)

Assemblies: Lion.Device.CPL590.dll, Lion.Base.dll

Parameters:
channel The channel number of the CPL59X Driver.
cancellationToken The Cancellation Token.
Returns:
Measurement The Measurement information for the last data block received
from the CPL59X Driver selected by channel number.
Exceptions:
InvalidOperationException No Active CPL59X Drivers found.
Or
Device NOT Connected.
Remarks:

The Measurement information consists of the Maximum value, the Minimum value, the Average value, and the Peak-to-
Peak value of the receiving data block.

Example:

public void DisplayStatistics(CPL590Api apiHandle, int channelNumber)
{

// Get Async cancellation token
var taskCancel = new CancellationTokenSource();

// Read the Measurement data for all Drivers
Measurement[] measData = apiHandle.GetDataStatisticsAsync(taskCancel.Token).Result;

// Display the Peak-to-Peak value of the data block
Console.Write(measData.P2P);

1.4.23 SetSensitivityLevel
Sets the calibration range sensitivity levels on all active CPL592’s in the system.
Syntax (C#)
int SetSensitivityLevel(SensitivityLevel sensitivityRange);

Assembilies: Lion.Device.CPL590.dll, Lion.Base.dl|

29 M017-9370.001

7166 4th Street North

I I O N Precision noncontact sensors and experts to help you use them

Oakdale, MN 56128-7534

651-484-6544

PRECISION
Parameters:
sensitivityRange The Sensitivity level. See SensitivityLevel property
for structure.
Remarks:

The CPL592 provides two sensitivity calibrations (Range 1 and Range 2) for one probe. Refer to the calibration sheets for
specific calibration information. Select the desired sensitivity with this switch. Switching sensitivities will usually require

repositioning the probe. The CPL591 only has one range and will ignore this function.

Exceptions:

InvalidOperationException Device must be Connected.

ArgumentException Only valid on Channel 0. or
Sensitivity Range Level must be 0 or 1.

DeviceErrorException The FT4222 Chipset driver returned an error.

Exception

Example:

public static void Main()

{
// Get API

var apiHandle = CPL590Api();

// Get List of Devices on USB Bus
var devicelList = apiHandle.GetAvailableChannels();

// Cycle through the list and enable all channels
foreach (var driver in devicelist)
{
// Connect to Device
apiHandle.Connect(driver);

// Check Connected flag
if (driver.IsConnected == false)

{
}

Console.Write(“Connect Failed.”);

}

// Check for High Sensitivity range in parameters
var sensitivityRange = Sensitivitylevel.R1;

// Set the Driver Sensitivity Range
apiHandle.SetSensitivitylLevel(SensitivityLevel .R1);

1.4.24 Dispose
Releases unmanaged and - optionally - managed resources.
Syntax (C#)
void Dispose();
Assemblies: Lion.Device.CPL590.dll, Lion.Base.dll

Parameters:

30

M017-9370.001

Precision noncontact sensors and experts to help you use them

7166 4th Street North

Oakdale, MN 55128-7534

PRECISION 651-484-6544

Remarks:

The Dispose method performs all object cleanup, so the garbage collector no longer needs to call the objects'
Object.Finalize override. Therefore, the call to the SuppressFinalize method prevents the garbage collector from running
the finalizer. If the type has no finalizer, the call to GC.SuppressFinalize has no effect. Note that the actual work of releasing

unmanaged resources is performed by the second overload of the Dispose method.

Exceptions:

Example:

public static void Close(CPL590Api apiHandle)

{
// Dispose and release the API

apiHandle.Dispose();

31 M017-9370.001

Precision noncontact sensors and experts to help you use them

7166 4th Street North
Oakdale, MN 55128-7534
651-484-6544

LION

PRECISION

2.0 Lion.Base

2.1 Properties

SystemConfiguration

The structure defining the characteristics of the System

ChassisConfiguration

The structure defining the characteristics of the Chassis in the
System.

ChannelConfiguration

The structure defining the characteristics of the Channels
(Drivers) in the Chassis.

Devicelnfo

The internal information of the FTDI 4222 Chips on the CPL59X
Channel (Driver).

AnalyzeOptions

The options for Data Calculations.

TransferOptions

The options for Data Transfer.

AsyncState

A user-defined object that qualifies or contains information
about an asynchronous operation.

Calibration

The Calibration (TEDs) data for the device Channel.

Measurement

The Measurement values (Statistics) of the incoming Data.

2.1.1 SystemConfiguration

SystemConfiguration

Initializes a new instance of the SystemConfiguration class.

Add

Adds the Chassis to System Configuration.

Get

Gets the specified Chassis Configuration

ChassisCount

The number of Chassis in this System

ChassisList

The list of Chassis in this System.

DataTransferOptions

The data transfer settings.

DataAnalyzeOptions

The data analyze settings.

32

M017-9370.001

Precision noncontact sensors and experts to help you use them

LION

PRECISION

A. SystemConfiguration

7166 4th Street North

Oakdale, MN 55128-7534

Initializes a new instance of the SystemConfiguration class.

Syntax (C#)

void SystemConfiguration ()
Assemblies:

Lion.Base.dll

Remarks:

651-484-6544

This method is automatically called when the GetAvailableChannels method is run on the API and the API has found
Devices on the USB Bus. It does not have to be called by the application.

B. Add

Adds the Chassis to System Configuration.

Syntax (C#)

void Add (ChassisConfiguration item)

Assemblies:

Lion.Base.dll

Remarks:

This method is automatically called when the GetAvailableChannels method is run on the API and the API has found
Devices on the USB Bus. On the CPL59X One-Channel System, there will be a different Chassis configuration added for
each Device found. It does not have to be called by the application.

C. Get

Get (string SerialNumber)

Gets the specified Chassis Configuration by the serial number of
the corresponding Channel (Driver)

Get (int ChannelNumber)

Gets the specified Chassis Configuration by the channel number

Syntax (C#)

ChassisConfiguration Get (string SerialNumber)

ChassisConfiguration Get (int ChannelNumber)

Assemblies: Lion.Base.dl|

Remarks:

This method is called when the application needs to retrieve the configuration for one of the Chassis’s installed the
System. The Chassis selected will be the one that has a Channel with the corresponding Serial Number or Channel
Number. If the Serial Number string is empty, or the Channel Number is -1, then the first Chassis in the list will be

retrieved.

Example:

33

M017-9370.001

7166 4th Street North

I I D N Precision noncontact sensors and experts to help you use them

PRECISION

Oakdale, MN 55128-7534
651-484-6544

public static int GetChassisNumber(CPL590Api apiHandle, string serialNumber)

{

// Get the System Configuration structure
var system = apihandle.GetSystem();

// Get the desired Chassis Configuration structure
var chassis = system?.Get(serialNumber);

// Return with the number of this Chassis.
return chassis.ChassisNumber;

D. ChassisCount

The number of Chassis in this System.
Syntax (C#)

int ChassisCount

Assemblies:

Lion.Base.dll

Remarks:

This property will give the application the number of Chassis’s found in the System when the GetAvailableChannels
method is run on the APl and the API has found Devices on the USB Bus. On the CPL59X One-Channel System, the will

be a different Chassis configuration added for each Device found.

Example:
public static int GetChassisCount(CPL590Api apiHandle)
{
// Get the System Configuration structure
var system = apihandle.GetSystem();
// Return with the number of Chassis.
return system.ChassisCount;
i

E. ChassisList

The list of Chassis in this System.

Syntax (C#)
ListcChassisConfiguration> ChassisList
Assemblies:

Lion.Base.dl|

Remarks:

This property will give the application the strong typed list of Chassis’s found in the System when the GetAvailableChannels
method was run on the APl and the API has found Devices on the USB Bus. On the CPL59X One-Channel System, the will be a

different Chassis configuration added for each Device found.

34

M017-9370.001

Precision noncontact sensors and experts to help you use them
7166 4th Street North

Oakdale, MN 55128-7534

PRECISION 651-484-6544
Example:
public static int GetChassisCount(CPL590Api apiHandle)
{
// Get the System Configuration structure
var system = apihandle.GetSystem();
// Return with the number of Chassis.
return system.ChassisCount;

F. DataTransferOptions

The options for Data Transfer.

Syntax (C#)

TransferOptions DataTransferOptions
Assemblies:

Lion.Base.dll

Remarks:

This property will give the application the ability to set/get the parameters (options) for running data transfer (read)
from the Channels.

Example:
public static void SetOptions(CPL590Api apiHandle, int dataSize, double sampleRate)
{
// Get the System Configuration structure
var system = apihandle.GetSystem();
// Set new options
var system.DataTransferOptions = new TransferOptions ()
CalculatedSamplingRate = sampleRate,
DataChannelCount = apiHandle.GetActiveChannels().Count,
ChannelBufferSize = dataSize
¥
i

G. DataAnalysisOptions

The options for Data Calculations.
Syntax (C#)

AnalyzeOptions DataAnalyzeOptions
Assemblies:

Lion.Base.dll

Remarks:

This property will give the application the ability to set/get the parameters (options) for processing and calculating the
data blocks read from the Channels.

35 M017-9370.001

LION

Precision noncontact sensors and experts to help you use them

PRECISION

7166 4th Street North
Oakdale, MN 55128-7534
651-484-6544

Example:
public static void SetOptions(CPL590Api apiHandle, int dataSize, double numberOfRevs)
{
// Get the System Configuration structure
var system = apihandle.GetSystem();
// Set new options
system.DataAnalyzeOptions = new AnalyzeOptions ()
{
NumberRevolutions = numberOfRevs,
DataChannelCount = apiHandle.GetActiveChannels(),
ChannelBufferSize = dataSize
¥
)i
2.1.2 ChassisConfiguration

ChassisConfiguration | |njtializes a new instance of the ChassisConfiguration class.

Add | Adds the Channel to Chassis Configuration.

Get | Gets the specified Channel Configuration

Type | The type of Chassis.

ChassisNumber | The designation number of the Chassis

Channellist | The list of Channels (Drivers) installed on this Chassis.

The Configuration for each Chassis in the System.

A.

ChassisConfiguration

Initializes a new instance of the ChassisConfiguration class.

Syntax (C#)

void ChassisConfiguration ()

Assemblies:

Lion.Base.dll

Remarks:

This method is automatically called when the GetAvailableChannels method is run on the APl and the API has found
Devices on the USB Bus. It does not have to be called by the application.

B.

Add

Adds the Channel to the Channellist property.

Syntax (C#)

void Add (ChannelConfiguration item)

36

M017-9370.001

Precision noncontact sensors and experts to help you use them

LION

PRECISION

Assemblies:

Lion.Base.dll

Remarks:

7166 4th Street North

Oakdale, MN 55128-7534

651-484-6544

This function is automatically called when the GetAvailableChannels method is run on the APl and the API has found
Devices on the USB Bus. On the CPL59X One-Channel System, the will be a different Chassis configuration added for
each Device found. It does not have to be called by the application.

C. Get

Get (string SerialNumber)

Gets the specified Channel Configuration by the serial number
of the corresponding Channel

Get (int ChannelNumber)

Gets the specified Channel Configuration by the channel
number

Syntax (C#)

ChannelConfiguration Get (string SerialNumber)

ChannelConfiguration Get (int ChannelNumber)

Assemblies:

Lion.Base.dll

Remarks:

This method is called when the application needs to retrieve the configuration for one of the Channels installed in the
Chassis. The Channel selected will be the one with the corresponding Serial Number or Channel Number. If the Serial
Number string is empty, or the Channel Number is -1, then the first Channel in the list will be retrieved.

Example:
public static int GetChannelNumber(CPL590Api apiHandle, string serialNumber)
{
// Get the System Configuration structure
var system = apihandle.GetSystem();
// Get the desired Chassis Configuration structure
var chassis = apihandle.GetChassis();
// Get the desired Channel Configuration structure
var channel = chassis?.Get(serialNumber);
// Return with the number of this Channel.
return channel.ChannelNumber;
)i
D. Type
The type of Channel.
Syntax (C#)

ChassisType Type

37

M017-9370.001

Precision noncontact sensors and experts to help you use them
7166 4th Street North

Oakdale, MN 55128-7534
PRECISION 651-484-6544

Assemblies:

Lion.Base.dll
Remarks:

This property allows the Application to set which type of Channel is created for data transfer. For CPL59X, this type is
only set to Data.

E. ChassisNumber

The designation number of the Chassis.
Syntax (C#)

int ChassisNumber

Assemblies:

Lion.Base.dll

Remarks:

This property is incremented by one for each new Chassis in the System found by the API. The first Chassis is designated
as 1.

F. ChannelList
The strong typed List of all Channels found in this Chassiss.
Syntax (C#)

List<ChannelConifguration> ChassisList

Assemblies:
Lion.Base.dll
Remarks:

This list is filled when the Add function is run during the GetAvailableChannels method on the APl and the API has
found Devices on the USB Bus. It does not have to be called by the application.

38 M017-9370.001

Precision noncontact sensors and experts to help you use them
7166 4th Street North

Oakdale, MN 55128-7534
PRECISION 651-484-6544

2.1.3 ChannelConfiguration

The Configuration for each Channel (Driver) in the Chassis.

Type | The type of Channel.

ChannelNumber | The designation number of the Channel

IsEnabled | The flag indicating whether the Channel is enabled

IsConnected | The flag indicating whether the Channel is connected

Name | The name of the Channel.

Id | The identifier of the Channel.

Calibration | The Calibration (TEDs) data for the device Channel.

Measurements | The Measurements of the Data received on the Channel.

DriverHandle | The driver handle.

A. Type

The type of Channel.
Syntax (C#)
ChannelType Type

Assemblies:
Lion.Base.dll
Remarks:

This property allows the Application to set which type of Channel is created for data transfer. For CPL59X, this type is
only set to Data.

B. ChannelNumber

The designation number of the Channel
Syntax (C#)

int ChannelNumber

Assemblies:

Lion.Base.dl|

Remarks:

39 M017-9370.001

Precision noncontact sensors and experts to help you use them
7166 4th Street North

Oakdale, MN 55128-7534
PRECISION 651-484-6544

This property is incremented by one for each new Device (Driver) in the Chassis found by the API. The first Channel is
designated as 1. If there are multiple Chassis’s in the System, this number will correspond to the Slot numbers in each

Chassis.
Example:
public static int GetChannelNumber(CPL590Api apiHandle, string serialNumber)
{
// Get the System Configuration structure
var system = apihandle.GetSystem();
// Get the desired Chassis Configuration structure
var chassis = apihandle.GetChassis();
// Get the desired Channel Configuration structure
var channel = chassis?.Get(serialNumber);
// Return with the number of this Channel.
return channel.ChannelNumber;
)i

C. IsEnabled

The flag indicating whether the Channel is enabled for connection.

Syntax (C#)

bool IsEnabled

Assemblies:

Lion.Base.dll

Remarks:

This property is to be set by the Application before Connect is called. The flag informs the API that the Channel is to be

opened. This allows the Application to decide which Channel(s) should be run and tested. If the flag is not set, then the
API will not open connection to the Driver.

40 M017-9370.001

7166 4th Street North

I I O N Precision noncontact sensors and experts to help you use them

PRECISION

Example:

Oakdale, MN 55128-7534
651-484-6544

public static void Main()

{
// Get API

var apiHandle = CPL590Api();

// Get List of Devices on USB Bus
var devicelList = apiHandle.GetAvailableChannels();

// Cycle through the list and enable all channels
foreach (var driver in devicelist)
{
// Only enable Channel (Driver) #1 for testing
if (driver.ChannelNumber < 2)
driver.IsEnabled = true;

}

// Connect to Channels (Drivers)
apiHandle.Connect(devicelist);

// Cycle through the list and check channels
foreach (var driver in devicelist)
{
// Only check Channel (Driver) #1 for connection
if (driver.ChannelNumber > 1)
continue;

// Check Connected flag
if (driver.IsConnected == false)

{
}

Console.Write(“Connect Failed.”);

}
}

D. IsConnected

The flag indicating whether the Channel has opened for testing.

Syntax (C#)

bool IsConnected
Assemblies:
Lion.Base.dll
Remarks:

This property is to be set by the Application after Connect has been successful.

41

M017-9370.001

7166 4th Street North

I I O N Precision noncontact sensors and experts to help you use them

PRECISION

Example:

Oakdale, MN 55128-7534
651-484-6544

public static void Main()

{
// Get API

var apiHandle = CPL590Api();

// Get List of Devices on USB Bus
var devicelList = apiHandle.GetAvailableChannels();

// Cycle through the list and enable all channels
foreach (var driver in devicelist)
{
// Only enable Channel (Driver) #1 for testing
if (driver.ChannelNumber < 2)
driver.IsEnabled = true;

}

// Connect to Channels (Drivers)
apiHandle.Connect(devicelist);

// Cycle through the list and check channels
foreach (var driver in devicelist)
{
// Only check Channel (Driver) #1 for connection
if (driver.ChannelNumber > 1)
continue;

// Check Connected flag
if (driver.IsConnected == false)

{
}

Console.Write(“Connect Failed.”);

}

E. Name

A text string containing the name of this member.

Syntax (C#)

string Name

Assemblies:

Lion.Base.dll

Remarks:

This property was read from the Calibration (TEDs) information stored in the Driver.

42

M017-9370.001

7166 4th Street North

I I D N Precision noncontact sensors and experts to help you use them

Oakdale, MN 55128-7534
651-484-6544

Example:
public static void Main()
{
// Get API
var apiHandle = CPL590Api();
// Get List of Devices on USB Bus
var devicelList = apiHandle.GetAvailableChannels();
// Cycle through the list and display names of Drivers (Channels)
foreach (var driver in devicelist)
// Display names of Drivers found
Console.Write(driver.Name);
}
i
F. Id

The text string identifier of the Channel.

Syntax (C#)
string 1d
Assemblies:
Lion.Base.dl|

Remarks:

This property is the actual identifier numbers for the ‘A’ and ‘B’ sides of the FTD4222 chip on the CPL59X Drivers. The

identifiers for the two sides are separated by a colon (;’).

Example:

public static void Main()

{
// Get API

var apiHandle = CPL590Api();

// Get List of Devices on USB Bus
var devicelList = apiHandle.GetAvailableChannels();

// Cycle through the list and display ID’s of Drivers (Channels)
foreach (var driver in devicelist)

// Display names of Drivers found
Console.Write(driver.Id);

}

G. Calibration

The Calibration (TEDs) data for the device Channel.

Syntax (C#)
Calibration Calibration

Assembilies: Lion.Base.dll

43

M017-9370.001

LION

Precision noncontact sensors and experts to help you use them

PRECISION

Remarks:

This information for this property is read from the TEDs memory of the Driver.

Example:

7166 4th Street North
Oakdale, MN 55128-7534

651-484-6544

public static void Main()

{
// Get API

var apiHandle = CPL590Api();

// Get List of Devices on USB Bus
var devicelist = apiHandle.GetAvailableChannels();

// Cycle through the list and enable all channels
foreach (var driver in devicelist)
{
// Only enable Channel (Driver) #1 for testing
if (driver.ChannelNumber < 2)
driver.IsEnabled = true;

}

// Connect to Channels (Drivers)
apiHandle.Connect(devicelist);

// Cycle through the list and check channels
foreach (var driver in devicelist)
{
// Only check Channel (Driver) #1 for connection
if (driver.ChannelNumber > 1)
continue;

// Check Connected flag
if (driver.IsConnected == false)

{
}

Console.Write(“Connect Failed.”);

}

H. Measurements

The Measurement values (Statistics) of the incoming Data.
Syntax (C#)

Measurement Measurements

Assemblies: Lion.Base.dll

Remarks:

The information for this property is calculated on each Data Buffer received.

44

M017-9370.001

7166 4th Street North

I I D N Precision noncontact sensors and experts to help you use them

PRECISION

Example:

Oakdale, MN 55128-7534
651-484-6544

public static void Main()

{
// Get API

var apiHandle = CPL590Api();

// Get List of Devices on USB Bus
var devicelList = apiHandle.GetAvailableChannels();

// Cycle through the list and enable all channels
foreach (var driver in devicelist)
{
// Only enable Channel (Driver) #1 for testing
if (driver.ChannelNumber < 2)
driver.IsEnabled = true;

}

// Connect to Channels (Drivers)
apiHandle.Connect(devicelist);

// Cycle through the list and check channels
foreach (var driver in devicelist)
{
// Only check Channel (Driver) #1 for connection
if (driver.ChannelNumber > 1)
continue;

// Check Connected flag
if (driver.IsConnected == false)

{
}

Console.Write(“Connect Failed.”);

}

I. DriverHandle

The pointer to the CPL59X Driver class. This class performs the low-level functions with the actual CPL59X FTD 4222

chip.

Syntax (C#)
bool IsEnabled
Assemblies: Lion.Base.dl|

Remarks:

This property is to be set by the Application before Connect is called. The flag informs the API that the Channel is to be
opened. This allows the Application to decide which Channel(s) should be run and tested. If the flag is not set, then the

API will not open connection to the Driver.

45

M017-9370.001

LION

Precision noncontact sensors and experts to help you use them

PRECISION

Example:

7166 4th Street North
Oakdale, MN 55128-7534
651-484-6544

{

public static void Main()

// Get API
var apiHandle = CPL590Api();

// Get List of Devices on USB Bus
var devicelList = apiHandle.GetAvailableChannels();

// Cycle through the list and enable all channels
foreach (var driver in devicelist)

{
// Only enable Channel (Driver) #1 for testing
if (driver.ChannelNumber < 2)
driver.IsEnabled = true;
¥

// Connect to Channels (Drivers)
apiHandle.Connect(devicelList);

// Cycle through the list and check channels
foreach (var driver in devicelist)
{
// Only check Channel (Driver) #1 for connection
if (driver.ChannelNumber > 1)
continue;

// Check Connected flag
if (driver.IsConnected == false)

{
}

Console.Write(“Connect Failed.”);

46

M017-9370.001

Precision noncontact sensors and experts to help you use them

LION

PRECISION
2.1.4 Devicelnfo

7166 4th Street North

Oakdale,

MN 55128-7534
651-484-6544

Flags | Indicates device state. Can be any combination of the following:
FT_FLAGS_OPENED
Type | Indicates the device type. Can be one of the following:
FT_DEVICE_232R, FT_DEVICE_2232C, FT_DEVICE_BM,
FT_DEVICE_AM, FT_DEVICE_100AX or FT_DEVICE_UNKNOWN
Id | The Vendor ID and Product ID of the device
Locld | The physical location identifier of the device

SerialNumber

The device serial number

Description

The device description

FtHandle

The device handle. This value is not used externally and is provided
for information only.
If the device is not open, this value is 0.

2.1.5 AsyncState

ChannelCount

The number of Channels

DataSize | The size of the data.
DataBuffer | The data buffer.
Offset | The offset into the buffer (for each channel).
ACallBack | The callback when data is received.

2.1.6 AnalysisOptions

EccentricityChannel

The eccentricity channel. Default is 0.

TypeData

The type of data coming from the device (see DataType for choices)
Digital for Count). This flag is used to calculate the proper
Displacement values for the type of device. Default is Digital.

SamplingMode

The sampling mode. Default is Manual.

NumberRevolutions

The Number of Revolutions to be used in Auto Sample mode. Default
is 20.

SamplesPerRevolution

The Samples per Revolution to be used in Auto Sample mode.
Default is 100.

ActualSamplingRate

The actual sampling rate. Default is 4000+,.

TargetMultiplier

The target multiplier. Default is 1.0.

UnitScale

The unit scale. Default is Micrometers.

RemoveNG

Indicating whether to remove Near Gap measurement in calculating
displacement from raw probe voltage/count. Default is true.

PolarCalculation

Indicating whether to calculate displacement, from raw probe
voltage/count, for polar view displays. Default is false.

47

M017-9370.001

Precision noncontact sensors and experts to help you use them

LION

PRECISION
2.1.7 TransferOptions

7166 4th Street North
Oakdale, MN 55128-7534
651-484-6544

DataChannelCount | The Number of Data Channels to be run. Default is 0.

TotalChannelCount | The Total Number of Channels (Data Channels plus
Index/Temperature if enabled). Default is 0.

ChannelBufferSize | The receive buffer size (per channel). Default is 2048,,.

ReceiveBufferSize | The total receive buffer size (all channels). Default is 2048,.

MaximumRpm | The maximum RPM. Default is 15000,

CalculatedSamplingRate | The calculated sampling rate. Default is 10000;,.

SensitivityRange | The sensitivity range. Default is R1.

2.1.8 Calibration

The calibration (TEDs) information for CPL591/2

Property Type:
Channel The channel number of this Driver.
Model The model name of this Driver .
SerialNumber The serial number of this Driver.
ProbeModel The probe model name.
ProbeSerialNumber [The probe serial number.
Orderld The customer order number.
PartNumber The part number of this Driver.

FarGap The maximum range (in displacement) calibrated for this Driver.
NearGap The minimum range (in displacement) calibrated for this Driver.
MaxVolts The maximum volts calibrated for this Driver.

MinVolts The minimum volts calibrated for this Driver.

SensitivityVolt The Analog Sensitivity (Volts per unit) calibrated for this Driver
FarCount The maximum digital count calibrated for this Driver.
NearCount The minimum digital count calibrated for this Driver.
Range The difference between the Far Gap and Near Gap.
SensitivityCount The Digital Sensitivity (Counts per unit) calibrated for this Driver.
Units The units for displacement (micrometers, millinches, etc.) calibrated for this
Driver

48 M017-9370.001

LION

PRECISION

2.1.9 Measurement

Precision noncontact sensors and experts to help you use them

The Measurement values (Statistics) of the incoming Data.

7166 4th Street North
Oakdale, MN 55128-7534
651-484-6544

Min The minimum value in the data buffer.
Max The maximum value in the data buffer.
P2P The range of values (peak to peak) in the data buffer.
Average The average value in the data buffer.
Count The size of the data buffer.

49

M017-9370.001

Precision noncontact sensors and experts to help you use them

7166 4th Street North
Oakdale, MN 55128-7534
651-484-6544

LION

PRECISION
2.2

Enumerations

2.2.1 ApiState

Idle

Idle (initial state)

Connecting

APl is connecting to the device (Connect)

Disconnecting

APl in Disconnecting from Device

ReadConfigurationSlotl

APl is reading Calibration info (TEDs) from driver in slotl

ReadConfigurationSlot2

APl is reading Calibration info (TEDs) from driver in slot2

ReadConfigurationSlot3

APl is reading Calibration info (TEDs) from driver in slot3

ReadConfigurationSlot4

APl is reading Calibration info (TEDs) from driver in slot4

ReadConfigurationSlot5

APl is reading Calibration info (TEDs) from driver in slot5

ReadConfigurationSlot6

APl is reading Calibration info (TEDs) from driver in slot6

ReadConfigurationSlot7

APl is reading Calibration info (TEDs) from driver in slot7

ReadConfigurationSlot8

APl is reading Calibration info (TEDs) from driver in slot8

Flush

LionStream is executing a Flush function

Ready

APl is ready for next function call

Sampling

LionStream is running Auto Sampling mode and changing Sample rate to get
desired Number of Revolutions and Samples per Revolution.

Streaming

LionStream is receiving data from Device

Error

API| has detected an error

Shutdown

APl is going through the Shutdown sequence

Closed

APl is going through the closing sequence

2.2.2 ApiType

Device

The APl is for a real Device

Simulator

The APl is for a Simulated Device

2.2.3 DeviceMode

Unknown | The unknown
Elite | Elite System
Sca | SpindleCheck Analyzer
Sci | SpindleCheck Inspector
Cpl590 | cPL59X 2U

2.2.4 ChannelType

Data | The Channel is a Data Channel
Encoder | The Channel is an Encoder Channel
Index | The Channelis an Index Channel
Temperature | The Channel is an Temperature Channel

2.2.5 ChassisType

Cpl590 | CcPL59x
Elite | Elite with NI DAQ Device (USB-6366, etc.)
Sci | Spindle Check Device

50

M017-9370.001

Precision noncontact sensors and experts to help you use them
7166 4th Street North

Oakdale, MN 55128-7534
PRECISION 651-484-6544

2.2.6 DataType

Analog | The data coming from the device is in Volts. This flag is used to calculate the
proper Displacement values for the type of device.

Digital | The data coming from the device is in Digital Counts. This flag is used to calculate
the proper Displacement values for the type of device.

2.2.7 SensitivityLevel

R1 | In asingle Range Driver (CPL591) this is the only Gap Range selection setting. In a
multiple range driver (CPL592 or CPL594), this is the first Gap Range selection
setting. The Gap ranges are determined by the Calibration of this Driver.

R2 | In a multiple range driver (CPL592 or CPL594), this is the second Gap Range
selection setting. The Gap ranges are determined by the Calibration of this
Driver.

R3 | In a multiple range driver (CPL594), this is the third Gap Range selection setting.
The Gap ranges are determined by the Calibration of this Driver.

R4 | In a multiple range driver (CPL594), this is the fourth Gap Range selection setting.
The Gap ranges are determined by the Calibration of this Driver.

2.2.8 SamplingMode

Auto | Automatic Sampling Mode. API will change Device's sampling rate until the
desired number of Revolutions and Samples per Revolution are received from
the device in a data block.

Manual | Manual Sampling Mode. The Device's sampling rate can be manually set to any
value (above 0) with no regard to number of Revolutions or Samples per
Revolution.

Encoder | Encoder Sampling Mode. This mode is only for the Elite Systems with a TMP190
board connected to a Spindle that has an Encoder output.

51 M017-9370.001

Precision noncontact sensors and experts to help you use them

7166 4th Street North
Oakdale, MN 55128-7534
651-484-6544

LION

PRECISION

2.2.9 TransferOptionName

CalculatedSamplingRate

The calculated sampling rate. This is used for Auto Sampling mode.

ChannelBufferSize

The channel buffer size. The amount of data that each Channel will
read from the Device (Driver) in 16 bit words.

ReceiveBufferSize

The channel buffer size. The total amount of data (all Channels) that
will be read from the Device (Driver) in 16 bit words.

SensitivityRange

The sensitivity range setting for the Driver.

DataChannelCount

The data channel count. The number of Driver Channels that are
running Data transfer, excluding Index and Temperature Channels.
Index and Temperature Channels are not used in current CPL59X
Systems.

TotalChannelCount

The total channel count. The number of Driver Channels that are
running including Index and Temperature Channels. Index and
Temperature Channels are not used in current CPL59X Systems.

All

All of the Transfer Options

2.2.10 AnalysisOptionName

EccentricityChannel

The eccentricity channel. Default is 0.

SamplingMode

The sampling mode. Default is Manual.

NumberRevolutions

The Number of Revolutions to be used in Auto Sample mode.
Default is 20.

SamplesPerRevolution

The Samples per Revolution to be used in Auto Sample mode.
Default is 100.

ActualSamplingRate

The actual sampling rate. Default is 4000,.

TargetMultiplier

The target multiplier. Default is 1.0.

UnitScale

The unit scale. Default is Micrometers.

RemoveNG

Indicating whether to remove Near Gap measurement in calculating
displacement from raw probe voltage/count. Default is true.

PolarCalculation

Indicating whether to calculate displacement, from raw probe
voltage/count, for polar view displays. Default is false.

All

All of AnalysisOptions

52

M017-9370.001

Precision noncontact sensors and experts to help you use them
7166 4th Street North

Oakdale, MN 55128-7534
PRECISION 651-484-6544

3.0 Lion.Stream

3.1 Public Member Functions
BeginRead Begins an asynchronous read operation.
CopyTo Reads the double words from this stream and writes them to generic class

Stream in bytes, using a specified buffer size.

CopyToAsync Reads the double words from this stream and writes them to generic class
Stream in bytes, using a specified buffer size in asynchronous mode.

EndRead Waits for the pending asynchronous read operation to complete.
Flush Clears buffers for this stream and causes any buffered data to be disposed.
Read Reads data from the Device
ReadAsync Asynchronously Reads data from the Device
Dispose Releases the managed and unmanaged resources used by API

53 M017-9370.001

Precision noncontact sensors and experts to help you use them
7166 4th Street North

Oakdale, MN 55128-7534
PRECISION 651-484-6544

3.1.1 BeginRead

Begins an asynchronous read operation. (Consider using ReadAsync instead.)
Syntax (C#)
IAsyncResult BeginRead (double arrayl,], int numBytes, AsyncCallback userCallback, object stateObject)

Assemblies: Lion.Core.dll

Parameters:
array The buffer to read data into.
offset The byte offset in array at which to begin reading.
numBytes The maximum number of double words to read.
userCallback The method to be called when the asynchronous read operation is
completed.
stateObject A user-provided object that distinguishes this particular asynchronous read
request from other requests. Refer to AsyncState property for the structure.
Returns:

An |AsyncResult that represents the asynchronous call.

Remarks:

The BeginRead method starts asynchronously reading data from the CPL591/2 Driver. Calling the BeginRead method
gives you the ability to receive data within a separate execution thread.

You must create a callback method that implements the AsyncCallback delegate and pass its name to the BeginRead
method. Because you will want to obtain the received data within your callback method, you should create a small class
or structure to hold a read buffer and any other useful information. Pass the structure or class instance to the BeginRead
method through the state parameter.

Your callback method should call the EndRead method. When your application calls BeginRead, the system will wait until
data is received or an error occurs, and then the system will use a separate thread to execute the specified callback
method, and blocks on EndRead until the provided LionStream reads data or throws an exception. If you want the original
thread to block after you call the BeginRead method, use the WaitOne method. Call Set in the callback method when you
want the original thread to continue executing. For additional information about writing callback methods, see Marshaling
a Delegate as a Callback Method.

The BeginRead method reads as much data as is available, up to the number of bytes specified by the size parameter

Exceptions:
InvalidOperationException Device must be Connected.
Encoder Mode not supported by this Device
ArgumentException or _
Missing Callback
or
Sampling Rate must be at least 10.
or
Data size must be at least 100 words.
Example:

54 M017-9370.001

https://msdn.microsoft.com/en-us/library/system.iasyncresult(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.net.sockets.networkstream.endread(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.net.sockets.networkstream.endread(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.threading.eventwaithandle.set(v=vs.110).aspx

to help you use them

7166 4th Street North

I I O N Precision noncontact sensors and experts
Oakdale, MN 55128-7534

PRECISION

651-484-6544

LionStream lionStream;
double[] testData;

public static public static void DataHandler(CPL590Api apiHandle, int dataSize)

{

// Get the number of Channels
var channelCount = apihandle.GetOption(TransferOptionName. DataChannelCount);

// Set the data size
apihandle.SetOption(TransferOptionName.ChannelBufferSize, dataSize);

// Build test data buffer
testData = new double[channelCount, dataSize];

// Use the GetStream public method to return the LionStream.
lionStream = apiHandle.GetStream();

// Perform a BeginRead function to start receiving data
lionStream.BeginRead(testData, ©, dataSize, DataCallbackS, null);

// If Begin did not happen, error
if (!apiHandle.Running)

¢ Console.Write(“Data Did NOT Begin!”)
)
¥
public void DataCallbackS(IAsyncResult ar)
{
//Get the data packets from the Api
var read = lionStream.EndRead(ar);
{
var stateObject = (AsyncState)ar.AsyncState;
testData = stateObject.DataBuffer;
}
}

3.1.2 CopyTo

Reads the double words from this stream and writes them to generic class Stream in bytes, using a specified buffer

size.
Syntax (C#):
double[,] CopyTo(Stream destination, int channelNumber, int bufferSize)

Assemblies: Lion.Core.dl|

Parameters:
destination The stream to which the contents of the current stream will be copied.
channelNumber The channel number. The default is 0
bufferSize The size of the buffer (in double words). This value must be greater than
zero. The default size is 2048.

55

M017-9370.001

Precision noncontact sensors and experts to help you use them

7166 4th Street North

Oakdale, MN 55128-7534

PRECISION 651-484-6544

Returns:

The data buffer (in 2D array of double words) received from the CPL591/2 Driver

Exceptions:

ArgumentException Invalid Channel Number. Check number of channels created.

Remarks:

Example:

LionStream lionStream;
double[] testData ;

public static void CopyData(CPL590Api apiHandle, MemoryStream objMemoryStream, int dataSize)
{
// Get the number of Channels

var channelCount = apihandle.GetOption(TransferOptionName. DataChannelCount);

// Set the data size
apihandle.SetOption(TransferOptionName.ChannelBufferSize, dataSize);

// Build test data buffer
testData = new double[channelCount, dataSize];
for (var ptr = 0; ptr < dataSize; ptr++) testData[ptr] = 0x69;

// Use the GetStream public method to return the LionStream.
lionStream = apiHandle.GetStream();

// Copy LionStream to Memory Stream using CopyTo method
var testDataAll = lionStream.CopyTo(objMemoryStream, 0, dataSize);

objMemoryStream.Seek (@, SeekOrigin.Begin);

// Build check data buffer
var checkBytes = new byte[dataSize * 2];
for (var ptr = 0; ptr < 100; ptr++) checkBytes[ptr] = Ox5A;

// Read data back from Memory Stream
var byteCount = objMemoryStream.Read(checkBytes, ©, checkBytes.Length);
checkData = checkBytes.ByteToDouble();

// Verify copied data is correct
var testData = testDataAll.CopyRow(0);
for (var index = @; index < dataSize; index++)

{
if (checkData[index] != testData[index])
{
Console.Write($"Stream Data Compare Error at Index {index}");
return ;
¥
}

3.1.3 CopyToAsync

Asynchronously reads the double words from this stream and writes them to generic class Stream in bytes, using a
specified buffer size.

Syntax (C#):

Task<double[,]> CopyToAsync(Stream destination, int channelNumber, int bufferSize, CancellationToken
cancellationToken)

Assemblies: Lion.Core.dl|

56 M017-9370.001

to help you use them

7166 4th Street North

I I O N Precision noncontact sensors and experts
Oakdale, MN 55128-7534

651-484-6544

PRECISION
Parameters:
destination The stream to which the contents of the current stream will be copied.
channelNumber The channel number. The default is 0
bufferSize The size of the buffer (in double words). This value must be greater than
zero. The default size is 2048.
Returns:

The data buffer (in 2D array of double words) received from the CPL591/2 Driver

Exceptions:

ArgumentException Invalid Channel Number. Check number of channels created.

Remarks:

Example:

LionStream lionStream;
double[] testData ;

public static void CopyData(CPL590Api apiHandle, MemoryStream objMemoryStream, int dataSize)
{
// Get the number of Channels
var channelCount = apihandle.GetOption(TransferOptionName. DataChannelCount);

// Set the data size
apihandle.SetOption(TransferOptionName.ChannelBufferSize, dataSize);

// Build test data buffer
testData = new double[channelCount, dataSize];
for (var ptr = 0; ptr < dataSize; ptr++) testData[ptr] = 0x69;

// Use the GetStream public method to return the LionStream.
lionStream = apiHandle.GetStream();

// Copy LionStream to Memory Stream using CopyTo method
var testDataAll = lionStream.CopyToAsync(objMemoryStream, @, dataSize,
taskCancel.Token).Result;

objMemoryStream.Seek (0@, SeekOrigin.Begin);

// Build check data buffer
var checkBytes = new byte[dataSize * 2];
for (var ptr = 0; ptr < 100; ptr++) checkBytes[ptr] = Ox5A;

// Read data back from Memory Stream
var byteCount = objMemoryStream.Read(checkBytes, ©, checkBytes.Length);
var checkData = checkBytes.ByteToDouble();

// Verify copied data is correct
var testData = testDataAll.CopyRow(0);
for (var index = @; index < dataSize; index++)

if (checkData[index] != testData[index])

{
Console.Write($"Stream Data Compare Error at Index {index}");
return ;

57

M017-9370.001

Precision noncontact sensors and experts to help you use them
7166 4th Street North

Oakdale, MN 55128-7534
PRECISION 651-484-6544

3.1.4 EndRead

Waits for the pending asynchronous read operation to complete.
Syntax (C#):

int EndRead(IAsyncResult asyncResult)

Assembilies: Lion.Core.dll

Parameters:

asyncResult The reference to the pending asynchronous request to wait for.

Returns:

The number of double words read from the stream, between 0 and the number of double words you requested.
Streams only return 0 at the end of the stream, otherwise, they should block until at least 1 byte is available.

Exceptions:
Remarks:

In the .NET Framework 4 and earlier versions, you have to use methods such as BeginRead and EndRead to implement

asynchronous 1/O operations. These methods are still available in the .NET Framework 4.5 to support legacy code;
however, the new async methods, such as ReadAsync, CopyToAsync, and FlushAsync, help you implement asynchronous

1/0 operations more easily.

Call EndRead to determine how many bytes were read from the stream.

EndRead can be called once on every |AsyncResult from BeginRead.

This method blocks until the I/0 operation has completed.
Example:

(see the BeginRead function for example)

3.1.5 Flush

When overridden in a derived class, clears all buffers for this stream and causes any buffered data to be written to the
underlying device.

Syntax (C#):

public void Flush ();
Assemblies: Lion.Core.dll
Remarks:

Override Flush on streams that implement a buffer. Use this method to move any information from an underlying buffer
to its destination, clear the buffer, or both. Depending upon the state of the object, you might have to modify the current

position within the stream (for example, if the underlying stream supports seeking).

58 M017-9370.001

https://docs.microsoft.com/en-us/dotnet/api/system.io.stream.endread?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.iasyncresult?view=netframework-4.7.2

Precision noncontact sensors and experts to help you use them
7166 4th Street North

Oakdale, MN 55128-7534

PRECISION 651-484-6544
Exceptions:
10.10Exception An |/O error occurred.
ObjectDisposedException The stream is closed.
3.1.6 Read

Reads a block of double words from the stream and writes the data in a given buffer.
Syntax (C#):
public int Read (double arrayl[,], int count)

Assembilies: Lion.Core.dll

Parameters:
When this method returns, contains the specified data array
array with the
values between offset and (offset +count -1) replaced by
the
double words read from the current source.
The byte offset in array at which the read double words will be
offset placed.
count The maximum number of double words to read.
Returns:

The total number of double words read into the buffer. This might be less than the number of double words
requested if that number of double words are not currently available, or zero if the end of the stream is reached.

Exceptions:

InvalidOperationException Device must be Connected.
or
There must be at least one Channel created.

ArgumentException Encoder Mode not supported by this Device.
or

Missing Callback.

Sampling Rate must be at least 10.
or

Data size must be at least 100 words.

Remarks:

Use the CanRead property to determine whether the current instance supports reading. Use the ReadAsync method to
read asynchronously from the current stream.

3.1.7 ReadAsync

Reads a block of double words from the stream and writes the data in a given buffer.

59 M017-9370.001

Precision noncontact sensors and experts to help you use them
7166 4th Street North

Oakdale, MN 55128-7534
PRECISION 651-484-6544

Syntax (C#):
public int Read (double array[,], int count)

Assemblies: Lion.Core.dll

Parameters:
When this method returns, contains the specified data array
array with the
values between offset and (offset +count -1) replaced by
the
double words read from the current source.
The byte offset in array at which the read double words will be
offset placed.
count The maximum number of double words to read.
Returns:

The total number of double words read into the buffer. This might be less than the number of double words
requested if that number of double words are not currently available, or zero if the end of the stream is reached.

Exceptions:

InvalidOperationException Device must be Connected.
or

There must be at least one Channel created.

ArgumentException Encoder Mode not supported by this Device.
or

Missing Callback.

Sampling Rate must be at least 10.
or

Data size must be at least 100 words.

Remarks:

Use the CanRead property to determine whether the current instance supports reading. Use the ReadAsync method to
read asynchronously from the current stream.

3.1.8 Dispose
Performs application-defined tasks associated with freeing, releasing, or resetting unmanaged resources.
Syntax (C#):
public void Dispose ()

Assemblies: Lion.Core.dll

60 M017-9370.001

help you use them

Precision noncontact sensors and experts to
7166 4th Street North

PRECISION
4.0 CPL590 Data Receiving Examples

4.1 Manual Mode

This code example performs a Read from the Driver in Manual mode.

Oakdale, MN 56128-7534

651-484-6544

public static Main()

{
// Get API

var apiHandle = CPL590Api();

// Get List of Devices on USB Bus
var devicelList = apiHandle.GetAvailableChannels();

// Cycle through the list and enable all channels
foreach (var driver in devicelist)

{
}

driver.IsEnabled = true;

// Connect to Devices and enable them
apiHandle.Connect(devicelist);

double[,] cpl59@Data = OpenRead(apiHandle, 5000, 67000, SamplingMode.Manual);

(put code here to analyze or display data)
¥

public static double[,] OpenRead(CPL590Api apiHandle, int dataSize, int sampleRate, SamplingMode
{

// Get Configuration (TEDs) data from the Driver
var tedsData = apiHandle.GetCalibrationsAsync(ct).Result;

// Set the Sampling Rate
apihandle.SetOption(TransferOptionName.CalculatedSamplingRate, sampleRate);

// Set the Sensitivity
apihandle.SetOption(TransferOptionName.SensitivityRange, SensitivitylLevel.R2);

// Set the Target Multiplier
apihandle.SetOption(AnalysisOpttionName.TargetMultiplier, 0.975);

// Set the Sampling Mode
apihandle.SetOption(AnalysisOpttionName.SamplingMode, mode);

// Set the Data Size
apihandle.SetOption(TransferOptionName.ChannelBufferSize, dataSize);

// Get Actives List
List<ChannelConfiguration> activelist = apiHandle.GetActiveChannels();

// Build test data buffer
var testData = new double[activelList.Count, dataSize];

// Use the GetStream public method to return the LionStream.
var lionStream = apiHandle.GetStream();

// Begin Data Transfer from Driver
var wordsread = lionStream.ReadAsync(testData, dataSize, ct).Result;
if (wordsread < dataSize)

{
}

return testData;

Console.Write($"Data Count {wordsread} is less than expected {dataSize}!"); return null;

mode)

61

M017-9370.001

Precision noncontact sensors and experts to help you use them
7166 4th Street North

Oakdale, MN 55128-7534
PRECISION 651-484-6544

4.2 Auto Mode

This code example performs a Read from the Driver in Auto mode. The operator selects the desired number of revolutions

and samples per revolution to be present in the data buffer.

public static Main()
{
// Get API
var apiHandle = CPL590Api();
// Get List of Devices on USB Bus
var devicelList = apiHandle.GetAvailableChannels();
// Cycle through the list and enable all channels
foreach (var driver in devicelist)
{
driver.IsEnabled = true;
¥
// Connect to Devices and enable them
apiHandle.Connect(devicelist);
double[,] cpl59@Data = OpenRead(apiHandle, 5000, 20, 100, SamplingMode.Auto);
(put code here to analyze or display data)
¥
public static double[,] OpenRead(CPL590Api apiHandle, int dataSize, , int numberRevs, int samplesPerRev,
SamplingMode mode)
{
// Get Configuration (TEDs) data from the Driver
var tedsData = apiHandle.GetCalibrationsAsync(ct).Result;
// Set the Sampling Rate
apihandle.SetOption(TransferOptionName.CalculatedSamplingRate, 4000);
// Set the Number Revolutions
apihandle.SetOption(AnalysisOpttionName .NumberRevolutions, numberRevs);
// Set the Samples Per Revolution
apihandle.SetOption(AnalysisOpttionName.SamplesPerRevolution, samplesPerRev);
// Set the Sensitivity
apihandle.SetOption(TransferOptionName.SensitivityRange, SensitivitylLevel.R1);
// Set the Target Multiplier
apihandle.SetOption(AnalysisOpttionName.TargetMultiplier, 0.975);
// Set the Sampling Mode
apihandle.SetOption(AnalysisOpttionName.SamplingMode, mode);
// Set the Data Size
apihandle.SetOption(TransferOptionName.ChannelBufferSize, dataSize);
// Get Actives List
List<ChannelConfiguration> activelist = apiHandle.GetActiveChannels();
// Build test data buffer
var testData = new double[activelList.Count, dataSize];
// Use the GetStream public method to return the
LionStream. var lionStream = apiHandle.GetStream();
// Begin Data Transfer from Driver
var wordsread = lionStream.ReadAsync(testData, dataSize, ct).Result;
if (wordsread < dataSize)
{
Console.Write($"Data Count {wordsread} is less than expected {dataSize}!"); return null;
¥
return testData;
}

62 M017-9370.001

