TechNote

LT03-0027 • April 2013

C-LVDT Bandwidth - Response Speed

Applicable Equipment:

C-LVDT systems

<u>LION</u>

PRECISION

Applications:

Any application using the C-LVDT to make dynamic contact measurements of a moving target.

Summary:

The speed at which the C-LVDT can respond to movements of the surface it is measuring is determined by the amount of displacement and the adjustment of the contact force. This TechNote provides maximum speeds/displacements for a variety of contact forces.

C-LVDT Mechanics

The C-LVDT uses air pressure to create a force that extends the contact point from the body of the device. This determines the contact force and is adjusted with a small valve.

Contact Point Speed

The contact force determines the maximum speed at which the target can move away from the probe a given distance and not lose contact.

The calculation requires three datapoints:

- Contact force in grams
- Amplitude of displacement in microns
- Frequency motion in Hertz

For Linear Motion

Freq. (Hz) = Speed (units/sec) / Peak-to-Peak Distance (units)

For Rotary Motion

Freq. (Hz) = RPM X 60 X Number of Peaks

Speed Chart

The graph on the next page charts the curves of maximum speed at which a target can move a given distance (in a sinusoidal pattern) and maintain contact with the contact point for reliable measurements.

The calculations here are based on a 6.9 g moving mass of a C-LVDT (5.55 g Shaft, 1.35 g Tip). Shorter, older models (no longer available) had lower mass and slightly higher response speeds.

Lion Precision • 563 Shoreview Park Rd. • St. Paul, MN 55126 • 651-484-6544 • www.lionprecision.com • info@lionprecision.com ©2013 All Rights Reserved 3